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Abstract
In some situations, a circuit board may be approximated by
varying regions of roughly axisymmetric geometry, and a
cascaded two−port model may be easily constructed and
solved analytically. Each axisymmetric segment of the
model is a two−port (in thermal terms, a circular fin lacking
the traditional adiabatic boundary condition at the outer
radius), hence an arbitrarily complex (axisymmetric) board
model is represented by a cascaded two−port network. The
overall network is driven by a heat source at its inner radius,
and some outer radius boundary condition; the two−port
concept naturally separates the interior conduction and
surface convection properties from the temperature and heat
flux boundary conditions. Using this scheme, temperature
and heat flow may be easily determined at every position
within the model, thus providing necessary information on
the interactions between locations within the model −
permitting yet more complex analyses of a circuit board as
a multiple heat source system. Application of the
axisymmetric two−port method is made to thermal
characterization of semiconductor devices, including the
relationship between so called “min pad” and “1−inch pad”
device characteristics. The model is also compared to other
experimental data, where the “best fit” of the model
parameters shows a reasonable correlation with the
expected physical values of the experiment.
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Glossary of Symbols

A cross−section conduction area (m2)

A, B, C, D two−port transmission parameters

a, b general purpose constants

G thermal conductance (W⋅C−1)

h film coefficient (W⋅C−1m−2)

Ip(z) modified Bessel function of the first kind

Kp(z) modified Bessel function of the second kind

k fin (board) conductivity (W⋅C−1m−1)

m system parameter (m−1)

q heat flow (W)

Q total device power dissipation (W)

r radial coordinate (m)

T temperature variable (C)

T� bulk fluid temperature (C)

T two−port transmission matrix

t fin (board) thickness (m)

z dimensionless radius

Greek Symbols

� temperature rise/device power dissipation (C⋅W−1)

� temperature rise above bulk fluid temperature (C)

Subscripts and Superscripts

i, j, k, o board region or boundary designations

b, s, e beginning, spreader, ending boundary designations

p order of Bessel function

INTRODUCTION
In the semiconductor package thermal characterization

business, it is ultimately desirable to accurately describe
device performance in an actual application environment.
Obviously this performance is the result of a combined
package and system, thus one must know both the package
and the system characteristics in order to answer the question.
The reality is that the interaction between a package and its
environment may be quite complex (e.g., multiple and
significant parallel heat paths, and temperature dependent
behavior). Nonetheless it is convenient, and in many cases
adequate for first−order estimates, to consider that a uniquely
identifiable and clean boundary separates the package from
its environment (which, for the purposes of this discussion,
will be simply a “board”). From the package’s perspective,
the board simply absorbs heat (power), and, all else being
equal, responds by attaining a predictable temperature at the
package/board interface.
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From the board’s perspective, the package is simply a heat
source, the location of the package defining a “boundary” of
the board. The power injected into the board by the package
constitutes a boundary condition of the model, and the local
temperature varies in response. Ambient provides a second
boundary condition for the board. It is a fixed temperature,
and the ultimate sink for all the power injected by the
package. So for a board with a single package present, there
is an input heat source and associated temperature, and an
output heat “sink” with a second associated temperature.

A circuit board may therefore be thought of as a thermal
resistance between the package and ambient, even though it
is distinguished from a traditional thermal resistance in that
it “leaks” heat to convention as it flows from the input end
to the output end.

Two−Ports
In the electrical realm, the external view of a network

generally consists of terminals, often grouped in pairs. A
terminal pair, or port, is then represented as having a
potential, or voltage, between the two terminals of the port,
and a current flow into (and return from) the network at that
port. A network may have any number of ports, but if it may
be described using two ports, it is classified as a two−port
network, or more simply, a “two−port.” The literature is rich
in theory and applications of electrical two−ports, in
particular, passive, linear systems which will be the focus
here (1,2).

Using the conventional thermal−electrical analogy,
thermal “potential” is temperature, corresponding to
voltage; thermal “flow” is power, corresponding to current.
A circuit board having a single point heat input, and a single
output boundary condition, is, therefore, a thermal
two−port.

+ +

Figure 1. Electrical Two−Port

Sending Receiving

Is Ir

Vs Vr

+ +

Figure 2. Thermal Two−Port
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Note that two−port theory does not require that flow out
the receiving port equals flow into the sending port. Rather,
the model describes an overall relationship between the four
quantities associated with the two ports, as shown in
Equation 1, and represents the internal system by way of the
transmission parameters of the two−port: A, B, C, and D.

��Tsqs � � �A B
C D���Trqr � (eq. 1)

The transmission matrix, then, is defined as:

T � �A B
C D� (eq. 2)

The nature of a two−port is to permit a continuum of
boundary conditions at each port, trading off potential for
flow, and vice versa. Further, the trade off at one port
influences the conditions at the other port. For instance, an
adiabatic boundary at the receiving port (qr = 0) translates
into particular expressions for both potential and flow at the
sending end, purely in terms of the potential at the receiving
end:

�Ts � A · �Tr (eq. 3)
qs � C · �Tr

A zero potential at the receiver (�Tr = 0) results in
different relationships:

�Ts � B · qr (eq. 4)
qs � D · qr

Alternatively, values may be specified at the sender’s port,
and corresponding expressions derived for the receiver, by
inverting Equation 1:

��Trqr � � �A B
C D�−1��Tsqs � (eq. 5)

It turns out that for a properly formulated two−port (1,2),
the determinant of the transmission matrix will be unity
(which also implies that the four transmission parameters
are not completely independent), i.e.:

det�A B
C D� � 1 or AD−BC � 1 (eq. 6)

Equation 5 becomes:

��Trqr � � 1
AD−BC

�D −B
−C A���Tsqs �

(eq. 7)

��Trqr � � �D −B
−C A���Tsqs �

hence:
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Simple Boards as Two−Ports
It may now be seen that a simple circuit board, a “leaky”

thermal resistance, having a single package as a heat source
and a single ambient thermal ground, fits the two−port
model. The sending port is the package (injecting heat into
the system), and the receiving port represents the thermally
distant environment, perhaps the edges of the board or even
farther away. The driving potential at the sending port is the
temperature differential between the package/board
interface and some convenient reference temperature. The
potential at the receiving port is a similar temperature
differential between some location in the thermal system
being modeled, and some other convenient reference
temperature.

In many semiconductor applications, it is sensible to
reference all temperatures to some common ambient. In
particular, both the sending potential (the package/board
interface temperature), and the receiving potential (the
board perimeter temperature), should be referenced to
ambient. Indeed, it will be seen that this is a necessary step
in creating a thermal two−port representing a circuit board.
It is not necessary that the receiving temperature itself be
ambient; if this happens to be so, it is the special case where
the receiving potential is zero (analogous to the short−circuit
behavior of an electrical two−port).

What then should be the receiving port, that is, what
temperature and location in a circuit board thermal model
should be selected as the receiving port? To make sense
mathematically, the temperature must be an isotherm of the
system. That is to say, since a single scalar value is being
used in the model to represent the temperature at some
location in the system, it simultaneously represents all the

points in the system sharing that same temperature. To make
sense physically, the requirement is to identify an isotherm
that remains an isotherm over the operating range of interest
in the system (which is not to say that the temperature of the
isotherm is constant, but rather that its shape remain fixed.)
In real world systems, we may have to compromise.
Whatever isotherm is chosen as the receiving port will
influence the particular transmission parameters for that
model. Our goal should be to choose a useful one.

Axisymmetric Board
Consider the very simple model of a circuit board shown

in Figure 3. What is particularly helpful about the
axisymmetric model is that by definition the outer edge of
the board will be an isotherm, hence an acceptable choice as
the receiving port of the two−port. In this model, there is an
axisymmetric heat source at the inner radius (the package),
and an exterior circular perimeter of the board at which we
will specify both a temperature rise above ambient and
possibly a heat flow from the edge. Between the inner and
outer radii, board properties are uniform, and heat is lost
continuously to convection, characterized by a constant film
coefficient. Note that if the heat loss at the outer radius is
zero, we have a conventional circular fin, whose solution
may be found in any number of references (3,4). We are
interested here, however, in the more general case where the
outer edge is neither adiabatic nor a fixed temperature, i.e., it
is a thermal “port.”

The governing equation for this system (5,6) is:

d2T
dr2

� 1
r

dT
dr

	 2h
kt

(T−T�) � 0 (eq. 8)
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Figure 3. Basic Problem Geometry
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inner boundary conditions:
temperature, Tb heat, qb
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uniform convection, h

uniform convection, h

outer radius, re

outer boundary conditions:
temperature, Te
heat, qe
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With the following changes of variables,

� � T−T� (eq. 9)

m � 2h
kt


 (eq. 10)

z � mr (eq. 11)

Equation 8 becomes:

d2�
dz2

� 1
z

d�
dz

	 � � 0 (eq. 12)

Note that with this definition of �, all temperatures in the
model (throughout the domain, inclusive of the two
boundaries) become thermal potentials, now referenced to
the common ambient. Being a second order, homogeneous
ordinary differential equation, the general solution of
Equation 12 may be written (7) as follows:

� � aI0(z) � bK0(z) (eq. 13)

where a and b are arbitrary constants, and I0(z) and K0(z) are
the modified Bessel functions of the first and second kinds,
respectively. (Additional detail may be found in the
Appendix.) Since we also are interested in flow related
boundary conditions for the two−port, we must utilize the
basic Fourier heat conduction equation, that is:

q � −kA(r) dT
dr

(eq. 14)

which relates local temperature gradients (changes in
potential) to local heat flow. Equation 14 was in fact central
to the derivation of the original governing Equation 8. Again
using the change of variables from r into z, we have:

q � −k · t · 2�r · d�
dz

dz
dr (eq. 15)� −2�ktmr��

� −2�ktz��
Equation 15 thus leads to a second expression in the two

arbitrary constants (refer again to the Appendix for
additional detail on the Bessel functions), specifically:

(eq. 16)q � −2�ktz[aI1(z) 	 bK1(z)]

Axisymmetric Board as a Two−Port
We may now put the axisymmetric board solution into the

form of a two−port. Observe that together, Equations 13 and
16 constitute a system of two equations in the two unknowns
a and b, given appropriate boundary values for the potential
and flow.

In matrix form, these equations become:

(eq. 17)��i
qi� � � I0(zi)

−GiI1(zi)
K0(zi)

GiK1(zi)�ab�
where:

(eq. 18)Gi � 2�ktzi

We thus can solve for a and b given a potential and flow
at any position within the domain. For instance, if specified
at some zi, then:

(eq. 19)�ab� � � I0(zi)
−GiI1(zi)

K0(zi)
GiK1(zi)

−1��i
qi�

Now if the domain is defined over a range from z1 to z2,
inclusive, then Equation 19 is true for the two endpoints z1
and z2, that is:

(eq. 20)�ab� � � I0(z1)
−GiI1(z1)

K0(z1)
GiK1(z1)

−1��1
q1�

and also:

(eq. 21)�ab� � � I0(z2)
−GiI1(z2)

K0(z2)
GiK1(z2)

−1��2
q2�

We can therefore eliminate a and b between Equations 20
and 21, leaving an expression for the boundary conditions at
one end of the domain in terms of those at the other end of
the domain:

(eq. 22)

��1
q1� � � I0(z1)

−GiI1(z1)
K0(z1)

GiK1(z1)
� I0(z2)

−GiI1(z2)
K0(z2)

GiK1(z2)
−1��2

q2�
Recall now Equation 1:

��Tsqs � � �A B
C D���Trqr � (eq. 23)

It should be evident that Equation 22 is the two−port
representation of the axisymmetric board model in
accordance with Equation 1. Finally, the transmission
matrix for the two−port is the following two by two matrix
product:

(eq. 24)Tij � � I0(zi)
−GiI1(zi)

K0(zi)
GiK1(zi)� I0(zj)

−GjI1(zj)
K0(zj)

GjK1(zj)
−1

or

Tij � �Aij Bij
Cij Dij� (eq. 25)

where the subscript pairs indicate that it applies over the
domain spanning boundaries i and j. Certainly Equation 24
could be expanded to provide expressions for each of the
four transmission parameters explicit in Equation 25 – see
the Appendix − but there is no particular benefit in doing so.
Indeed, presuming that a computerized tool of some sort will
be used to perform actual calculations, there is less
opportunity for error in implementing the form of
Equation 24 directly, given its symmetry and relative clarity.
(Refer again to the Appendix). Observe, also, that the
symmetry of Equation 24 demonstrates that simply
exchanging boundary subscripts corresponds exactly to
obtaining the reverse transmission matrix, i.e.:

Tji � Tij
−1 (eq. 26)
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In other words, so long as our bookkeeping is consistent,
we can build our transmission matrices symbolically in
whichever “orientation” is desired (small radius to large, or
vice versa). The sending port need not be the heat source at
all, unless this is convenient for the problem at hand.

Single−Zone Thermal Test Board
The Appendix shows how the axisymmetric transmission

matrix of Equation 24 may be used to derive the following
expression for the temperature distribution in a circular
board with an adiabatic edge. This may also be found under
the guise of a “circular fin” in references such as (3) and (7).
In Equation 27, the b subscript represents the base of the fin
(the sending port), and the e subscript the adiabatic outer
radius of the fin (the receiving port):

T−T�
Tb−T�

� (eq. 27)
K1(mre)I0(mr) � I1(mre)K0(mr)

K1(mre)I0(mrb) � I1(mre)K0(mrb)

When a real thermal test board is considered, none of the
“constants” may actually be known accurately, especially
considering that we’re using this axisymmetric model to
approximate a rectilinear geometry (and even then,
rectangular circuit boards are generally far from uniform in
material properties, thanks to buried irregular metal planes
and actual circuit traces everywhere). Thus, if temperatures
are measured at known distances from a heat source, the best
choices for Tb, rb, re, and m may be better left as a statistical
“best fit” problem. Our main interest here is whether or not
the temperature profile derived for a uniform axisymmetric
circuit board, bears any resemblance at all to a real
temperature profile of a real board. If so, we can learn much
about the trade−offs of board properties (size, conductivity,

convection coefficient) holding the package itself as a
constant.

For this comparison, it is useful to rephrase Equation 27
in terms of our usual “normalized” temperatures where
everything is related to the total power dissipation of the heat
source in question, Q (that is, the heat input at the inside
radius rb), and the bulk convecting fluid temperature T�.
For simplicity in the best fit process, we have chosen the
following form of the solution (see Appendix):

T−T�
Q

� c�I0(mr) �
I1(mre)

K1(mre)
K0(mr)� (eq. 28)

where c, m, and re are the independent fit parameters.
(Following JEDEC terminology (8−10), this quantity would
be known as �BA, or psi−BA, the board−to−ambient
temperature difference normalized by package power
dissipation.)

Figure 4 illustrates an actual thermal test situation where
two components of interest were mounted on a customer’s
board, providing an excellent opportunity to compare the
analytical board model Equation 28 to a real application.
This circuit board had a fairly continuous embedded power
plane, so its thermal conductivity would be expected to be
reasonably uniform over a large area. Each device (a
two−channel TMOS driver) could be heated at either end,
and several thermocouples were placed on the board as
indicated in the figure. (Not shown is a TC on the back side
of the board.) Between the four heat sources and eight TC’s,
approximately 30 different samples of temperature rise vs.
distance were available.
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Figure 4. Board Diagram of Heat Sources and TC Locations
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Two different test configurations were measured.
Figure 5 shows the results (normalized data vs. the best−fit
board models) where both sides of the test board were
exposed to free convection conditions. Figure 6 shows the
results where only one side was exposed to convection, and
the other blocked from convection with a thick layer of low
density insulating foam. The best fit parameters could, if
desired, be compared with the theoretical values based on

the known properties, or conversely, used to estimate what
the material and convection properties must be in order to
give those parameter values. The main point to be made here
is that this “physics based” axisymmetric model, of board
temperature variation with distance from heat source, is
clearly a very reasonable approach, even for a real
application board with rectangular geometry and other
non−ideal attributes.

U13p7 heated
U13p5 heated
U18p7 heated
U18p5 heated
Best fit board model
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Figure 5. Closed−Form Best Fit to 2−Sides Convection Data
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Figure 6. Closed−Form Best Fit to 1−Side Convection Data
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Multiple−Zone Two−Port Board Model
In the semiconductor component manufacturer’s thermal

characterization business, commonly encountered board
designs are the so−called “1−inch pad” test boards
(Figure 7).

Figure 7. 1−Inch Pad Test Boards for
2 and 8−Lead Devices

In these designs, a plated−on copper heat spreader
surrounds the immediate vicinity of the test device
(generally mounted at the center of the heat spreader). The
spreader is itself much smaller than the entire test board.
Thus the effective thermal conductivity of the board changes
radically from an inner zone to an outer zone. Even with the
simplifying assumption of axisymmetry, the “brute force”
approach to this problem would be to return to the original
governing Equation 8, solve it for two separate zones with
continuity conditions at their interface, and apply
appropriate boundary conditions at the overall inner and
outer radii.

The two−port approach is far more elegant. Buried within
the transmission parameters of Equation 23 is all the internal
behavior of the domain, including the details of the physics,
the geometry, and even the nature of the coordinate system.
The ports are the boundary conditions. When two−ports are
cascaded, each interface is by definition an application of
continuity (equal potential, conservation of flow).

For instance, to represent the 1−inch pad test board, we
may most simply write just two transmission matrices,
multiply them through, and apply the desired overall
boundary conditions:

(eq. 29)��b
qb� � Tbs · Tse · ��eqe�

where here we have labeled the boundary of the spreader
area as interface s, so the inner domain (b−s) is covered
by the 1−inch heat spreader, and the outer domain (s−e) is
plain circuit board material. (Using the axisymmetric
formulation, we assume there to be a circular isotherm
separating the plated zone from the bare zone. A sensible
choice for the radius of boundary s is that which gives the
same area as the square heat spreader.) We may apply a
different film coefficient to each zone, if desired, but at the
very least, the effective conductivity of the board will be
different in the two regions due to the plating on the inner
region.

If we don’t care about the temperatures anywhere in
between the base and the end, Equation 29 is all there is to
it. For example, we can now easily explore the first of two
commonly asked questions in semiconductor packaging,
namely what is the difference in thermal performance on a
“min pad” vs. a 1−inch pad for a particular package? (A
min−pad board has no metal except the minimum traces and
pads necessary to mount the device and access it
electrically.) Intuitively, we know that the min−pad
performance is a strong function of the size of the package,
and that 1−inch pad performance is much better than
min−pad performance. Equation 29 gives us a simple, yet
physics−based answer to this question. Note also that if both
inner and outer regions are given the same (unplated) board
material properties, Equation 29 applies equally well for the
min−pad board.

Let us rephrase Equation 29 in terms more specific to our
immediate interest:

�Tb−T�
Q � � Tbs · Tse · �Te−T�

0 � (eq. 30)

As before, T� is the bulk fluid temperature (i.e., ambient).
Tb is the board temperature, found at the inner domain
boundary radius rb (that is, the inner boundary of the 1−inch
copper plated region). Q is the total package power
dissipation, which is input at rb.

The inner radius itself, rb, represents the package “size”.
To get the most use out of the results, ultimately we will want
to correlate specific package geometries of interest to this
“generic” package size parameter. For example, in a
standard dual inline type package, rb might best be
represented as half the distance from the leads on one side
of the package to the leads on the other side of the package;
whereas for a soldered heatsink type device, the best choice
might be the radius giving the same area as the actual
heatsink. In any event, rb is a fundamental variable in this
analysis, implicit in Tbs.

Finally, Te is the board temperature at the outer radius of
the plain circuit board material domain, re. (To be consistent,
its value will be the radius that gives the same area as the
actual total area of the test board.) Though we don’t as yet
have a value for Te, we have assumed in Equation 30 that the
exterior radius of the test board is adiabatic (meaning the
outer radius heat flow is expressly zero).

Introducing our subscript notation to indicate the domain
of application:

�Abe Bbe
Cbe Dbe� � Tbs · Tse (eq. 31)

Using this, Equation 30 becomes:

�Tb−T�
Q � � �Abe Bbe

Cbe Dbe��Te−T�
0 � (eq. 32)

or, expanding back into two individual equations,

Tb−T� � Abe(Te−T�) (eq. 33)
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(eq. 34)Q � Cbe(Te−T�)

Thus, the normalized temperature rise at the adiabatic
external board radius is:

Te−T�
Q

� 1
Cbe

(eq. 35)

and the normalized temperature rise at the inner radius,
�BA is:

Tb−T�
Q

�
Abe
Cbe

(eq. 36)

For quantitative results, the procedure is to compute the
system transmission matrix from the individual domains’
T’s. From that, extract just the two elements necessary to
compute Equation 36. Figure 8 is a plot for three cases of

interest, a min−pad board, and a 1−inch copper
heat−spreader board with two different thicknesses of
copper (1 oz and 2 oz). The horizontal axis is named
package radius, and is the board inner radius rb.

A second commonly asked question is, for a given
package, how does the thermal performance vary with
copper area? Equation 32 again contains the answer, if we
now hold the package size as a constant, and vary the
intermediate domain boundary, rs. Though not explicit
when we presented Equation 36, this intermediate boundary
radius appears in the second half of Tbs, and the first half of
Tse. (In Figure 8, it was a constant corresponding to the
“radius” of the 1−inch square pad.) Figure 9 shows a sample
of these alternate possibilities arising from Equation 36.
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Solution for Internal Temperature Profile
At the outset, it was suggested that a two−port model was

ideally suited for a system−level view of the test board, that
is, overall performance without requiring internal solution
details. However, the two−port board model in fact can be
used to predict the temperature profile within the various
zones. (Indeed, this was how Equation 27 is derived in the
Appendix.) Specifically, temperature rise as a function of
distance from the heat source, is precisely the “interaction
strength” that one device (heat source) has on other nearby
devices. It mainly depends on the thermal characteristics of
the board, and has practically nothing to do with particular
package characteristics. Adding even more motivation, the
so called “reciprocity theorem” (1,2) allows us to determine
the interaction strength of locations in geometries which
would otherwise be intractable to analyze directly. For
example, the axisymmetric problem in the left of Figure 10
we can solve using the techniques outlined here, whereas to
obtain a complete closed−form solution to the one on the
right, with an eccentric heat source, is extremely difficult, if
not impossible. Yet the reciprocity theorem says that the
response at the center of the board to the eccentric heat
source, will be identical to the response of the eccentric
position to a central heat source.

Heat Input Here

Same Response Here

Figure 10. Illustration of the Reciprocity Theorem

To solve for the internal temperature profile in the
axisymmetric board model, we note again that any number
of two−ports may be cascaded, resulting in but a more
complex two−port. It still has but four transmission
parameters, though it may be extremely tedious to write
them explicitly in symbolic form. With automated
computational tools, however, a lengthy string of two−ports
is effectively no different than a finite element model. In the
case of our axisymmetric board, we could, for instance,
model arbitrarily varying convection, conduction, or
thickness as a function of radius. To predict the internal
temperature profile of our 1−inch pad board, however, it
suffices to expand our existing system to use four zones, as
illustrated in Figure 11.

How does this help? As we noted earlier in the two−zone
model of the 1−inch pad board, when the material properties
are the same in the two zones, the model corresponds overall
to the min−pad board, or single−zone problem. Clearly, then,
if the two zones on either side of a boundary have the same
properties, then the specific position of the boundary is
irrelevant to the overall behavior of the model (shown
rigorously in the Appendix).

On the other hand, if we solve for the potential and flow
at the internal boundary, we obtain different values,
depending obviously on exactly where the boundary is
placed. Thus, a variable radius boundary, within a zone of
constant properties, serves as a probe for the temperature
and flow within that region. For example, suppose we want
the temperature profile within the inner, copper plated
region of the 1−inch board model. We construct a new
transmission matrix:

Tr ie � Tr is · Tse (eq. 37)for rb � ri � rs

where Tse is exactly as before, but now Tr
i
s is based on the

1−inch pad domain properties with a variable inner radius ri.
The following parallel to Equation 32 results:

�T(ri)−T�
q(ri) � � �Arie Brie

Crie Drie
��Te−T�

0 � (eq. 38)
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Figure 11. Multiple Regions of Annular Geometry
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What we do not want now is:

T(ri)−T�
q(ri)

�
Arie
Crie

because Q, upon which our normalization in Equation 32 is
based, is definitely not the same as q(ri). (The reason is that
some of the device power has been dissipated by convection
in the area between rb and the radius we’re trying to probe.)
Rather, from Equation 38 we obtain:

T(ri)−T� � Arie(Te−T�) (eq. 39)

and putting this together with Equation 33, the correct
expression is:

T(ri)−T�
Q

�
Arie
Cbe

(eq. 40)for rb � ri � rs

Similarly, we have in the outer region:

T(ro)−T�
Q

�
Aroe
Cbe

(eq. 41)for rs � ro � re

where we find Aroe directly from what previously was the

Tse transmission matrix, but now evaluated at a variable
inner radius ro, rather than the fixed 1−inch “square”
spreader radius rs. Equations 40 and 41 have been used to
generate the results shown in Figure 13 for the same three
boards previously analyzed in Figure 8, and two of which
were analyzed also in Figure 9. Observe, for example, that
the value of 47°C/W appears in all three figures for the
specific case of the 1 in−1 oz board at a package (or board

inner) radius of 0.002 m. (In Figure 9, this value is found at
a copper radius of 0.014 m, which is the circular radius
giving an area of 1 sq. in. and was the spreader radius used
to generate Figures 8 and 13).

Figure 12 shows a 1−inch−pad thermal test board with an
“SMB” body−style package, and eight thermocouples
placed at various locations on the board, four TC’s along a
diagonal from the device to the corner of the board, and four
on a line through the center of the package and parallel to the
board (and 1−inch pad). TC’s were soldered to the pad
locations, and glued at the FR4 locations. The SMB has a
body size of approximately 0.0033 x 0.0043 m, and its two
leads are 0.005 m apart.

For the purposes of Figure 14, the SMB was modeled as
a centered, axisymmetric heat source of radius 0.003 m.
�BA was calculated for each TC based on total heat
dissipation of the device. Measurements were made at both
0.75 W and 1.5 W and averaged for the chart. The only TC
reading that does not have excellent agreement with the
model is the one at the corner of the 1−inch pad, where its
actual distance is apparently larger than its “effective”
distance from the heat source. In fact, it is very close to the
perimeter of the pad, so it might be that a better measure of
“distance” on a square spreader such as this is its relative
position as compared to the circularized spreader radius; this
would shift it to just left of the pad edge in Figure 14, where
it obviously would be in much better agreement with the
axisymmetric model.

Figure 12. SMB and TC’s on 1−inch Pad
Thermal Test Board
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Limitations
Aside from the obvious limitations of imposing the

simplifying axisymmetric assumptions onto far more
complicated real geometries, the main limitation not
discussed to this point is the assumption that 100% of the
device power is deposited into the board at the inner
boundary of the axisymmetric model. In reality, of course,
some device power will be lost by convection and radiation
directly into the ambient environment from the exposed
surface of the package; similarly, some will be lost from the
(presumably continuous and exposed) far side surface of the
board beneath the package (and therefore inside the nominal
inner boundary radius). In many cases, this amount of heat
loss is a negligible fraction of the total. When it is not, the
two−port board model provides the true thermal resistance
of the board’s path, facilitating the construction of a more
complete model that accounts for these additional heat
losses in parallel to it. This would be approach when, for
example, the package has a locally applied heatsink that
diverts a significant portion of the package power directly
into the air above the package, thus bypassing the board. The
two−port solution provides the thermal resistance of the
board to be modeled as a parallel resistance to the heatsink
path.

Final Discussion – Why Bother?
Anyone with a little mathematical knowledge can fit a

polynomial curve to the data of Figures 5, 6, 13, or 14.
Anyone, even with no mathematical knowledge, but with a
modern spreadsheet program, can fit any number of types of
curves to the same data. Only a physics based method,
however, can provide the correct form of the curve to which
that data should be fit, and thus with any justification

extrapolated beyond the endpoints, or to somewhat different
conditions. It is remarkable indeed, and a testimony to the
validity of the preceding assertion, that the simple 2D
axisymmetric two−port developed in this paper does so well
in fitting actual data from real life, 3D non−axisymmetric
situations. That it may be implemented in a spreadsheet
program with a few simple formulas (see the Appendix),
makes it well worth the effort in deriving. All the more so,
given that it may be easily extended, using the same simple
computational tools, to more complex systems, limitations
notwithstanding.

It has been suggested that because one needs a
computer to readily implement the axisymmetric thermal
two−port, there is little value in utilizing it in preference
to a more sophisticated (and therefore less approximate)
computerized methodology, for example, a full finite
element or finite difference thermal modeler. Unfortunately,
many end users of semiconductor packages, especially of
the “commodity” type, have no more sophistication than a
common spreadsheet program, nor are they willing or able
to invest in a more specialized tool. Likewise, manufacturers
of commodity semiconductor devices are often asked to
provide very simple, quick responses to questions on
thermal performance, without sufficient information to
accurately define the end application at all. There is a place,
therefore, for a modeling method which accounts for the
actual physics of a combined convection/conduction
thermal system using the most mundane of computer tools,
with very little investment in time and detail. It may require
the knowledge of a thermal specialist, but it need not require
other specialized resources.

SUMMARY AND CONCLUSIONS
A simple axisymmetric board model (the equivalent of a

“circular fin”) was used as the foundation for a two−port
network thermal analysis. It was shown to match reasonably
well certain situations of actual thermal test board data.
Multiple two−ports cascaded together enabled complex
models of multiple zones of constant property domains to be
constructed. This two−port network method was then used
to quickly construct parameterized predictions of
board−ambient thermal characteristics using the simplest
possible idealization of a semiconductor package, that is, a
heat source of a certain size. It also was shown that the
two−port method may be used to predict temperature
gradients within a board. This, in turn, permits rough
estimates of component interactions in more complex
thermal environments.
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APPENDIX

Modified Bessel’s Equation
A particular form of Bessel’s equation:

d2�
dz2

� 1
z

d�
dz

��−1−
p2

z2
 � � 0 (eq. A1)

has as its general solution the modified Bessel functions of the first and second kinds, usually denoted Ip(z) and Kp(z)
respectively. Comparison of this equation with the axisymmetric governing Equation 12:

d2�
dz2

� 1
z

d�
dz

	 � � 0

shows that our problem is the special case where p = 0, hence the two linearly independent solutions for our second order
problem will be I0(z) and K0(z).

The derivatives of the modified Bessel functions are given in general as:

dIp(az)

dz
� aIp�1(az)�

p
z Ip(az) (eq. A2)

dKp(az)

dz
� −aKp�1(az)�

p
z Kp(az) (eq. A3)

Thus the specific derivatives of our solutions will be:

dI0(z)

dz
� I1(z) and

dK0(z)

dz
� −K1(z) (eq. A4)

We thus arrive at the general solutions for potential and flow given in the body of the paper as Equations 13 and 16.

Expansion of Axisymmetric Transmission Matrix
Given the axisymmetric transmission matrix, with Gi = 2�ktzi (see Equation 24):

Tij � � I0(zi)
−GiI1(zi)

K0(zi)
GiK1(zi)� I0(zj)

−GjI1(zj)
K0(zj)

GjK1(zj)
−1

recall:

det�a b
c d� � ad−bc and �a b

c d�−1
� 1

ad−bc
�d −b

−c a�
thus Equation 24 may be expanded into the more explicit form:

I1(zj)K0(zi) � I0(zi)K1(zj)
I0(zj)K0(zi)−I0(zi)K0(zj)

2�ktzj

Tij �
2�ktzi[I1(zj)K1(zi)−I1(zi)K1(zj)]

zi
zj

[I1(zi)K0(zj) � I0(zj)K1(zi)]

I1(zj)K0(zj) � I0(zj)K1(zj)

(eq. A5)

Now the Wronskian of Ip(z) and Kp(z) states (11):

Ip�1(z)Kp(z)� Ip(z)Kp�1 (z)� 1
z (eq. A6)

hence Equation A5 becomes, more simply:

zj[I1(zj)K0(zi) � I0(zi)K1(zj)]
I0(zj)K0(zi)−I0(zi)K0(zj)

2�kt (eq. A7)
2�ktzjzi[I1(zj)K1(zi)−I1(zi)K1(zj)] zi[I1(zi)K0(zj) � I0(zj)K1(zi)]

Tij �
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Equation A6 also allows us to quickly demonstrate the expected identity for the properly formed two−port:

det Tij �
zi[I1(zi)K0(zi) � I0(zi)K1(zi)]

zj[I1(zj)K0(zj) � I0(zj)K1(zj)]
� 1

Variable Radius within Constant Property Region
Consider the cascaded transmission matrices based on Equation 24 for two zones, b and e, separated by boundary s.

Tbs � � I0(zb)
−a1zbI1(zb)

K0(zb)
a1zbK1(zb)� I0(zs)

−a1zsI1(zs)
K0(zs)

a1zsK1(zs)
−1

(eq. A8)

Tse � � I0(zs)
−a2zsI1(zs)

K0(zs)
a2zsK1(zs)� I0(ze)

−a2zeI1(ze)
K0(ze)

a2zeK1(ze)
−1

(eq. A9)

where ax = 2�kxtx.

The overall transmission matrix Tbe is thus:

Tbe � � I0(zb)
−a1zbI1(zb)

K0(zb)
a1zbK1(zb)� I0(zs)

−a1zsI1(zs)
K0(zs)

a1zsK1(zs)
−1

·

(eq. A10)

� I0(zs)
−a2zsI1(zs)

K0(zs)
a2zsK1(zs)� I0(ze)

−a2zeI1(ze)
K0(ze)

a2zeK1(ze)
−1

but if the properties of the two regions are the same, then a1 = a2 = a, and the two matrices in the center are their own inverses.
They thus cancel out, yielding:

 

Tbe � � I0(zb)
−azsI1(zb)

K0(zb)
azsK1(zb)� I0(ze)

−azeI1(ze)
K0(ze)

azeK1(ze)
−1

(eq. A11)

which is, of course, what we would have had for the entire region b−e having uniform properties in the first place.

Adiabatic Fin Derived from Two−Port Solution
Equation (A7) may be written for the whole domain from b to e, and also for an internal region of variable radius, out

to e. Thus:

ze[I1(ze)K0(zb) � I0(zb)K1(ze)]
I0(ze)K0(zb)−I0(zb)K0(ze)

2�kt
(eq. A12)

2�ktzezb[I1(ze)K1(zb)−I1(zb)K1(ze)] zi[I1(zb)K0(ze) � I0(ze)K1(zb)]
Tbe �

ze[I1(ze)K0(z) � I0(z)K1(ze)]
I0(ze)K0(z)−I0(z)K0(ze)

2�kt (eq. A13)
2�ktzez[I1(ze)K1(z)−I1(z)K1(ze)] zi[I1(z)K0(ze) � I0(ze)K1(z)]

Tre �

Similarly, applying the adiabatic condition at ze to (A12) yields, for the temperature equation:

 
Tb−T� � ze[I1(ze)K0(zb) � I0(zb)K1(ze)](Te−T�) (eq. A14)

and for the flow equation:

 
Q � 2�ktzezb[I1(ze)K1(zb)−I1(zb)K1(ze)](Te−T�) (eq. A15)

Applying the adiabatic condition at ze to (A13) yields:

 
T(z)−T� � ze[I1(ze)K0(z) � I0(z)K1(ze)](Te−T�) (eq. A16)
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and:
 

q(z) � 2�ktzez[I1(ze)K1(z)−I1(z)K1(ze)](Te−T�) (eq. A17)

Now the ratio of (A14) to (A16) yields the conventional adiabatic circular fin relationship between temperature at any radius
in terms of the temperature rise at the base of the fin:

 
T(z)−T�
Tb−T�

�
ze[I1(ze)K0(z) � I0(z)K1(ze)](Te−T�)

ze[I1(ze)K0(zb) � I0(zb)K1(ze)](Te−T�)
(eq. A18)

�
I1(ze)K0(z) � I0(z)K1(ze)

I1(ze)K0(zb) � I0(zb)K1(ze)

which, with the change of variable zi = mri, was stipulated in the body of the paper as Equation 27.

To put the local temperature rise in terms of device power dissipation, simply divide (A15) into (A16), thus:

 
T(z)−T�

Q
�

ze[I1(ze)K0(z) � I0(z)K1(ze)](Te−T�)

2�ktzezb[I1(ze)K1(zb)−I1(zb)K1(ze)](Te−T�)
(eq. A19)

� 1
2�ktzb

I1(ze)K0(z) � I0(z)K1(ze)

I1(ze)K1(zb)−I1(zb)K1(ze)

constant terms may be collected as follows:

 

T(z)−T�
Q

� 1
2�ktzb

I1(ze)
K1(ze) K0(z) � I0(z)

I1(ze)K1(zb)
K1(ze) −I1(zb)

(eq. A20)

� c� I1(ze)

K1(ze)
K0(z) � I0(z)�

where, also as used in Equation 28 in the main body:

 

c � 1
2�ktzb

1
I1(ze)K1(zb)

K1(ze) −I1(zb)
(eq. A21)

Spreadsheet Implementation of Two−Port Model
Perhaps the most universally accessible, computerized

mathematical tool is the Microsoft® Excel spreadsheet
program. The axisymmetric thermal two−port is easily
implemented using simple formulas, as suggested below.
Probably the only difficulty the casual Excel user might
encounter is that the modified Bessel functions are hidden
away in the “Analysis Toolpak,” which takes a (one time
only) extra step to access. (Specifically, one goes to the
Tools: Add−Ins menu, and checks the Analysis Toolpak
checkbox.) Note that in the following examples, items in
uppercase indicate built−in Excel functions.

First, variables may be defined with mnemonic names
such as mval1, rad1, etc., according to the region of the
board model in question. This obviously facilitates a
parametric model, where changes in geometry (board
thickness, radii of interest), and thermal properties
(convection coefficients, conduction properties, etc.) are
built in to these variables’ own formulas.

Second, the symmetry of the transmission matrix, as seen
in Equations 24 and 25, lends itself to visually “clean”
coding into subgroups of four cells each, each of which is
also assigned a mnemonic name, for instance:

Zone 1 Matrix at r1, “lzone1’’

=BESSELI(mval1*rad1,0) =BESSELK(mval1*rad1,0)

=−cval1*rad1*BESSELI
(mval1*rad1,1)

=−cval1*rad1*BESSELK
(mval1*rad1,1)

Zone 1 Matrix at r2, “rzone1’’

=BESSELI(mval1*rad2,0) =BESSELK(mval1*rad2,0)

=−cval1*rad2*BESSELI
(mval1*rad2,1)

=−cval1*rad2*BESSELK
(mval1*rad2,1)
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The Excel formula to create the zone−1 transmission
matrix is then:

{=MMULT(lzone1,MINVERSE(rzone1))} (eq. A22)

which must, using normal Excel methods, be properly
entered comprising four cells of its own (and presumably
with its own mnemonic name, say tzone1). Without going
into more detail here, the expression shown as Equation A22
is called an “array formula,” so indicated by the curly braces
surrounding the expression. Besides the mnemonic name for
the zone−1 transmission matrix, each of its four individual
cells might also be named according to its position as one of
the four standard transmission parameters, for instance
tzone1A, tzone1B, etc.

If several zones are needed for the model (for instance,
four zones are needed to compute the graph of Figures 13
and 14), each zone would have its own separate variables
and cells defined in exact similarity to that shown above for
zone−1. Then, the overall transmission matrix would be
computed with another array formula, for instance:

{=MMULT(tzone1,MMULT(tzone2,MMULT(tzone3,tzone4)))}

(eq. A23)

If desired for subsequent formulas, as would be needed for
Equations 40 and 41 as an overall transmission parameter of
the entire system, thus Equation 40 might be represented by:

=tzone4A/tsysC (eq. A24)
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